A general realization theorem for matrix-valued Herglotz–Nevanlinna functions
نویسندگان
چکیده
منابع مشابه
A General Realization Theorem for Matrix-valued Herglotz-nevanlinna Functions
New special types of stationary conservative impedance and scattering systems, the so-called non-canonical systems, involving triplets of Hilbert spaces and projection operators, are considered. It is established that every matrix-valued Herglotz-Nevanlinna function of the form
متن کاملSemismooth Matrix-Valued Functions
Matrix-valued functions play an important role in the development of algorithms for semidefinite programming problems. This paper studies generalized differential properties of such functions related to nonsmooth-smoothing Newton methods. The first part of this paper discusses basic properties such as the generalized derivative, Rademacher’s theorem, -derivative, directional derivative, and sem...
متن کاملA Generalized Index Theorem for Monotone Matrix-Valued Functions with Applications to Discrete Oscillation Theory
An index theorem is a tool for computing the change of the index (i.e., the number of negative eigenvalues) of a symmetric monotone matrix-valued function when its variable passes through a singularity. In 1995, the first author proved an index theorem in which a certain critical matrix coefficient is constant. In this paper, we generalize the above index theorem to the case when this critical ...
متن کاملA dichotomy theorem for conservative general-valued CSPs
We study the complexity of valued constraint satisfaction problems (VCSP). A problem from VCSP is characterised by a constraint language, a fixed set of cost functions over a finite domain. An instance of the problem is specified by a sum of cost functions from the language and the goal is to minimise the sum. We consider the case of so-called conservative languages; that is, languages containi...
متن کاملOn Matrix-valued Herglotz Functions
We provide a comprehensive analysis of matrix-valued Herglotz functions and illustrate their applications in the spectral theory of self-adjoint Hamiltonian systems including matrix-valued Schrödinger and Dirac-type operators. Special emphasis is devoted to appropriate matrix-valued extensions of the well-known Aronszajn-Donoghue theory concerning support properties of measures in their Nevanli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2006
ISSN: 0024-3795
DOI: 10.1016/j.laa.2006.05.003